RackPLC No Frustration, EZ to Program

Free PLC Programming Software!!

Timers, Counters, Scaling, Drum Sequencer, Math Equations, Statistical Functions (avg, min/max, etc.)

Built-in Simulator

Creates a virtual PLC so you can test your logic without any hardware.

	Enter Tag Details for the Tag
	R20/1
Address	Memory Type Address Bit No.
Exp	ected IO Type : R/W or ROnly
Data Type	DISCRETE
No. of Chars	2 🔺
📃 Initial Value	
Initial Value	
ПК	Cancel Help

500,000 Instruction Words User Memory, **16384 Registers**

Advanced Instruction Set & Function Blocks

Break-point Ladder Logic Execution

Debug Ladder Logic by executing rung-by-rung

EZLogix has powerful instructions & Advanced function blocks found only in much more expensive PLCs

Simple Drag-n-Drop Ladder **Logic Software**

- Flexible, powerful and easy to use instructions designed to simplify programming
- Free Flow Ladder Logic
- **Each Rung Commented**
- User friendly dialog boxes

Automatic I/O Configuration

Connect to the EZLogix & automatically detect your I/O modules and addresses in the local base

The built-in simulator creates a virtual PLC so you can test your ladder logic without any PLC hardware present.

- Visually see on the virtual PLC, LED indicators light up dicrete inputs & outputs based on your ladder logic simulation.
- See register values within simulator to test out proper ladder logic instructions.
- View LED Indicators and Ladder Logic rungs simultaneously in Simulation mode.
- Simulates discrete and analog I/O with access to timers, counters, control bits, etc.
- Force discrete I/O "On" or "Off" to troubeshoot ladder logic
- Break-point debugging while in simulation mode to test certain portions of the ladder program
- Our Windows application uses the same code as the EZLogix CPU firmware for the most accurate simulation.

Built-in Simulator

Creates a virtual PLC so you can test your logic without any hardware.

Virtually see how your EZLogix ladder program performs for FREE before buying any hardware

	Debug/	'Monitor			×
		Local Tags	Watch Ta	ags IO Tags	۲
	Display	Format De	ecimal \sim		
	Add	iress Data	Туре	Current Value	^
	11	DISC	RETE	OFF	
	12	DISC	RETE	OFF	
	13	DISC	RETE	OFF	
	14	DISC	RETE	OFF	
	15	DISC	RETE	FORCED OFF	
	16	DISC	RETE	OFF	
	17	DISC	RETE	OFF	
	18	DISC	RETE	FORCED OFF	
	19	DISC	RETE	ON	
) 10	DISC	RETE	OFF	
	11	DISC	RETE	OFF	
	2 112	DISC	RETE	OFF	
	3 113	DISC	RETE	ON	
	4 114	DISC	RETE	OFF	
	5 I15	DISC	RETE	OFF	
	5 116	DISC	RETE	OFF	
	1 OR1	UNS	IGNED_INT_	16 2048	
	2 OR2	2 UNS	IGNED_INT_	16 950	
	3 OR3	3 UNS	IGNED_INT_	16 0	
	4 OR4	UNS	IGNED_INT_	16 10	
	IR1	UNS	IGNED_INT_	16 2048	
	IR2	UNS	IGNED_INT_	16 950	
	IR3	UNS	IGNED_INT_	16 0	
	IR4	UNS	IGNED_INT_	16 10	
	IR5	UNS	IGNED_INT_	16 0	
TU	IR6	UNS	IGNED_INT_	16 0	
	IR7	UNS	IGNED_INT_	16 0	
	IR8	UNS	IGNED_INT_	16 0	
	1 01	DISC	RETE	OFF	
	2 02	DISC	RETE	OFF	
· · · · · · · · · · · · · · · · · · ·	3 03	DISC	RETE	ON	
1	1 04	DISC	PETE	OFF	V

ON-LINE - DEBUG Mode

RackPLC **IIoT/ Industry 4.0 Ready**

EZRACKPLC Data Logging Instruction on USB

- Store up to 64GB of valuable PLC data on EZLogix built-in USB port
- Stay connected from anywhere in real-time with plant production and maintenance data using EZLogix secure IIoT / MQTT protocol for data transfer
- Store real-time PLC data based on tag event and time intervals in .csv format
- Remotely access PLC data using Free EZIIoT utility with integrated messsage queuing telemetry transport (MQTT) protocol

					Log				
lax 32 char inclu	ding ext and	any appended fields.			Log Ty	pe	At Regular Time Intervals (When	n Enable Tag is Hig	jh) V
) Tag Based				\sim	Event/	Enable Tag	ı LT		\sim
Fixed	aint Booth S	Station A			Log Tir	ne-interval	0 MilliSecor	nd 🗸 🗸	
ppend to File Na	me <mark>∕Hou</mark> (Use	r es 4 char) □ Day (Uses 2 cha	r) Mon	ith es 3 char)	Status	Tag	INPUT ALM		~
ile Size Tag				~	Status 00:Nor 02:File	value defir mal operat open error	nitions: ion (No Errors) r (USB Drive may not be plugged)		
ag shows file siz elect Tags ag Names are us	e in bytes. ed as colum	Data Sa n headers in CSV file. W	ved in CSV ith each re	Format.	04:File	Vrite error	r (USB Drive may be full) C Time Decimal Places for Float	ting Point Tags 5	
ag shows file siz elect Tags ag Names are us vailable Tags:	e in bytes. ed as colum	Data San	ved in CSV ith each re	Format.	og PLC Date Selected Tag	write error ✓ Log PL s: (4/10)	r (USB Drive may be full) C Time Decimal Places for Float	ting Point Tags 5	
ag shows file siz elect Tags ag Names are us vailable Tags: Name	e in bytes. eed as colum Address	Data Sau n headers in CSV file. W	ved in CSV ith each re	Format.	04:File	write error Log PL s: (4/10) Address	r (USB Drive may be full) C Time Decimal Places for Float Type	ting Point Tags 5	
ag shows file siz elect Tags ag Names are us vailable Tags: Name INPUT 1	e in bytes. eed as colum Address R1	Data Sat n headers in CSV file. W Type UNSIGNED_INT_16	ith each re	Format.	04:File .og PLC Date Selected Tag Name R1	write error Log PL s: (4/10) Address R1	r (USB Drive may be full) C Time Decimal Places for Float Type UNSIGNED_INT_16	ting Point Tags 5	
ag shows file siz elect Tags ag Names are us vailable Tags: Name INPUT 1 R1.ACC	Address R1 R1 R1	Data San n headers in CSV file. W Type UNSIGNED_INT_16 UNSIGNED_INT_16	ith each re	Format.	04:File 04:File Selected Tag Name R1 INPUT 2	write error Log PLI s: (4/10) Address R1 R2 P32	r (USB Drive may be full) C Time Decimal Places for Float Type UNSIGNED_INT_16 UNSIGNED_INT_16	ting Point Tags 5	
ag shows file siz elect Tags ag Names are us vailable Tags: Name INPUT 1 R1.ACC R1.PRE RAMP CNT	Address R1 R3 R2 R1 R3 R21	Data San n headers in CSV file. W Type UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16	ith each re	Format.	04:File 04:File Selected Tag Name R1 INPUT 2 FLASH RAMP MIN	write error Log PLI s: (4/10) Address R1 R2 R32 R43	r (USB Drive may be full) C Time Decimal Places for Float Type UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16	ting Point Tags 5	
ag shows file siz elect Tags ag Names are us vailable Tags: Name INPUT 1 R1.ACC R1.PRE RAMP CNT RAMP UP	Address R1 R3 R21 R23	Data Sau n headers in CSV file. W Type UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16	ith each re	Format.	04:File Log PLC Date Selected Tag Name R1 INPUT 2 FLASH RAMP MIN	write error Log PL s: (4/10) Address R1 R2 R32 R43	r (USB Drive may be full) C Time Decimal Places for Float Type UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16	ting Point Tags 5	lete
ag shows file siz elect Tags ag Names are us vailable Tags: Name INPUT 1 R1.ACC R1.PRE RAMP CNT RAMP UP SCALE	Address R1 R3 R21 R23 R31	Data San n headers in CSV file. W Type UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16	ith each re	Format.	04:File 04:File Selected Tag Name R1 INPUT 2 FLASH RAMP MIN	write error Log PL/ s: (4/10) Address R1 R2 R32 R43	r (USB Drive may be full) C Time Decimal Places for Float Type UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16	ting Point Tags 5	lete g(s)
ag shows file siz elect Tags ag Names are us vailable Tags: Name INPUT 1 R1.ACC R1.PRE RAMP CNT RAMP UP SCALE FLASH.RES1	Address R1 R3 R21 R23 R31 R33	Data San n headers in CSV file. W Type UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16	ith each re	Format.	04:File 04:File Selected Tag Name R1 INPUT 2 FLASH RAMP MIN	write error Log PLI s: (4/10) Address R1 R2 R32 R43	r (USB Drive may be full) C Time Decimal Places for Float Type UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16	ting Point Tags 5	lete g(s)
ag shows file siz elect Tags ag Names are us vailable Tags: Name INPUT 1 R1.ACC R1.PRE RAMP CNT RAMP CNT RAMP UP SCALE FLASH.RES1 FLASH.RES2	Address R1 R3 R21 R3 R21 R31 R31 R33 R31 R33 R34	Data San n headers in CSV file. W Type UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16	ith each re	Format.	04:File og PLC Date Selected Tag Name R1 INPUT 2 FLASH RAMP MIN	write error Log PLI s: (4/10) Address R1 R2 R32 R43	r (USB Drive may be full) C Time Decimal Places for Float Type UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16	ting Point Tags 5	lete g(s) ove g Up
ag shows file siz elect Tags ag Names are us vailable Tags: Name INPUT 1 R1.ACC R1.PRE RAMP CNT RAMP UP SCALE FLASH.RES1 FLASH.RES2 SCALE RESULT	Address R1 R21 R23 R31 R33 R31 R33 R34 R42	Data San n headers in CSV file. W Type UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16	ith each re	Format.	04:File og PLC Date Selected Tag Name R1 INPUT 2 FLASH RAMP MIN	write error Log PLI s: (4/10) Address R1 R2 R32 R43	r (USB Drive may be full) C Time Decimal Places for Float Type UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16 UNSIGNED_INT_16	ting Point Tags 5	lete g(s) g Up

RackPLC Automatic I/O Configuration

Configure your EZLogix I/O modules automatically when you are connected over USB, Ethernet, EZ WiFi or Serial programming ports.

• Auto detect discrete, analog, and speciality modules within EZLogix Designer Pro.

• Automatically assigns respective tag address range.

Automatic I/O Configuration

Connect to the EZLogix & automatically detect your I/O modules and addresses in the local base

PLCs

EZRACKPLC Auto-tuned PID Loops

What is PID?

PID is one of the most popular control algorithms used in the industry to control the variables involved in an industrial manufacturing process for the proper operation of the process. PID stands for Proportional, Integral and Derivative control algorithm. With a proper choice of P, I, and D settings, a user can maintain a process value very close to the setpoint. In addition, if the setpoint changes, the PID algorithm can quickly bring the process back under control. EZLogix supports up to 8 auto-tuned PID loops. For each loop you have to define several parameters, as shown below in the PID Setup window. You may change most of these parameters during run time, using EZLogix Designer Pro in online mode.

PID Loop Auto Tuning

To achieve a stable and responsive process control, it is very important to select the proper PID parameters. Experienced users can estimate good starting values for these parameters and later tweak them to optimize the PID loop performance. This is called as the manual tuning of the process. Whereas, those who want help in estimating the starting values of the parameters like P, I, and D coefficients, EZLogix provides an Autotune feature.

PID Monitor

You can use the PID Monitor function to monitor and make real-time changes to your PID Loop. In order to use it, you must be connected to the PLC and select Main Menu > EZLogix > PID Monitor. A PID Monitor window will show up. Here you can change the current values of the parameters by entering a value in the New Value field. Once all of the parameters are defined, press the Apply button and then the Start Monitoring button at the bottom, to begin monitoring your PID Loop. A graph will begin to appear as shown in the image below.

Unfreeze Graph

Apply New Values

Export to Excel

Close

End Monitoring

ZRackPLC Advanced Function Blocks

EZLogix Designer Pro comes with a library of pre-defined function blocks such as scaling, compare, hi/low alarm, averaging, min/max, ramp generator, advanced math and many more, found typically in much more expesive PLCs.

The Free EZLogix Designer Pro software has been designed to provide our customers a more flexible and easy to use PLC programing experience. The EZLogix function blocks will continue to grow with customer requests at no additional costs to upgrade.

- Alarm
- Advanced Math
- Change of Value
- Compare Values
- Find Min and Max
- Flasher
- Limit
- Ramp generator
- Scale (Linear)
- Scale (Non-linear)
- String Pack
- String Unpack
- User defined faults
- IIoT (MQTT Publish)

Advanced Function Blocks

EZLogix has powerful instructions & Advanced function blocks found only in much more expensive PLCs Analog

Function Blocks

	_ _ x	
	Relay/Boolean	
	Compare	- 0 X
	Math	
	Bit Logic	- 0 .
	Move	
# (0) 40	Timer/Counter/Drum	• •
	Program Control	
	String	<u>a</u> x
	Communication	Relay/Boolean
	Data Logging	Compare
	Datatype Conversion	Compare
/Boolean	Process Alarms / Faults	Math
mpare	Analog	Bit Logic
/lath	Function Blocks	Move
Logic		
ounter/Drum	Alarm	Move Data
m Control		
tring		To May Back
nunication		
Logging		
larms / Faults	- MAX Find Min & Max Value	Block Fill
nalog	MIN	
Generator	M Flasher	Move Table of Constants
	LIM Limit	Move Bit
Non-Linear)	Kamp Generator	
	⁹ Scale (Linear)	
	Scale (Non-Linear)	
	String Pack	
	String Unpack	Timer/Counter/Drum
	User Defined Faults	Program Control
		String
		Communication
		Data Logging
		Datatype Conversion
		Process Alarms / Faults
ion Blocks		Analog
		Function Blocks
		v v

Rich Instruction Set

With optimized instruction sets whether it be simple ladder relay, boolen, move, bit logic instructions etc... or advanced math instructions for complex algorithm, the EZLogix Designer Pro has it all.

The Free EZLogix Designer Pro software has been designed to provide our customers a more flexible and easy to use PLC programing software. The EZLogix functions will continue to grow upon customer requests at no additional costs to upgrade.

- Relay/Boolean
- Compare
- Advanced Math
- Bit Logic
- Move
- Time, Counter, Drum
- Program control
- String
- Communication
- Data Logging
- Datatype conversion
- Process alarms/ Faults
- Analog
- IIoT

EZRACKPLC Force Inputs/Outputs (Great Troubleshooting Tool)

EZLogix CPU supports true Forcing of I/O and internal memory elements. Discrete I/O can be forced to either an ON or OFF state. Analog I/O points can be forced to constant values.

The forcing of numeric and bit memory elements simple means the CPU sets the element to the forced value and does not permit any additional update to the memory element as long as it is forced.

What is Forcing I/O?

The ability to Force I/O allows you to troubleshoot particular sections of your ladder program by "forcing" a state, in the case of a discrete I/O, or value, in an analog I/O, to make sure you are getting the expected result.

In order to comprehend the benefit of Forcing I/O, one must first distinguish the difference between the physical I/O of a PLC, called the "field side", and the internal status of that physical I/O within the ladder program, called the "logic side". In regular operation of a PLC, the status of the physical inputs is copied to the logic side at the top of the PLC scan, and the logic side of the outputs is copied to the fields side at the bottom of each scan. Forcing I/O interrupts the normal processing of the inputs and outputs. Instead, when an I/O is forced, the "logic side" is set to the forced value, and any change in the physical I/O is ignored, and any attempt to change the value or state in the logic is also ignored until the force is released.

			B. I		
16	🕜 Online 🛛 🛥 Simula	te 🔤 da 🕈 🗢	1 1 Per		I.×
		Tags 10 Tag	All Ta	gs	Þ
	4 Local lags Water				
T	Display Format Decimal		D-toTures.	Curren	
*	≠ TagName	Address	DataType	orr	
	1 START OUTPUTS	51	DISCR	055	
	2 STOP OUTPUTS	Set On	N	OFF	
	3 DRUM 1 RESET	Set Off	1.5	0	
	4 DRUM 1 CURRENT STE	ip ni	UNISIG.	5	
	5 DRUM I CURRENT CO	UNI KZ	DISCRE	ON	
	6 S11	511	DISCRE	ON	
1	7 01	517	DISCRE	OFF	
	0 00	02	DISCRE	OFF	
		913	DISCRE	OFF	
		03	DISCRE	OFF	
P	All Tags	\$14	DISCRE	OFF	
· .		04	DISCRE	OFF	
		515	DISCRE	OFF	
		05	DISCRE	OFF	
	A Malua	516	DISCRE	OFF	
urr	ent Value	06	DISCRE	OFF	
-		\$17	DISCRE	OFF	
FF.		07	DISCRE	OFF	
FF		518	DISCRE	OFF	
•••		08	DISCRE	OFF	
FF		\$19	DISCRE	OFF	
		09	DISCRE	OFF	
FF		\$20	DISCRE	OFF	
EE		010	DISCRE	OFF	
rr.		521	DISCRE	OFF	
FF		011	DISCRE	OFF	
		522	DISCRE	OFF	
FF		012	DISCRE	OFF	
		SZ3	DISCRE	OFF	
FF		013	DISCRE	OFF	
FF		524	DISCRE	OFF	T.
•••		014	DISCRE	OFF	
FF		525	DISCRE	OFF	
1		526	DISCRE	OFF	
	37 016	014	DISCRE	OFF	
	30 017	017	DISCRE	OFF	
	40 018	019	DISCRE	ON	
	41 019	019	DISCRE	OFF	
1	4 020	020	DISCRE	OFF	
Natz	NR Asso		DISCRE	OFF	-
	- MONITOR Mode				

RackPLC^{**}

Break-Point / Single Step Debugging

EZLogix Designer Pro's Break Point feature is an excellent debugging function to troubleshoot programming errors. Break points can be set at certain positons in the program in order to force an execution stop. At each stop, respective variable values can be examined. Only the tasks that reached the break point are stopped while all other tasks continue to run. The break point feature is ideal for troubleshooting large ladder logic

programs that do not have syntax errors but are not performing in the manner intended. It provides the programmer a step-by-step execution of variables in order to see where the potential bugs are in the ladder logic code.

EZLogix

Single Step Debugging

Yes Yes Yes Yes

> Takes you step-by-step to debug the rung from the start of your break-point

